Application of nano TiO2@KSF as an efficient and reusable catalyst for the synthesis of pyrano-pyrimidines

نویسندگان

  • Mahdi Fouladi Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
  • Mahnaz Shamsi-Sani aDepartment of Organic Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
چکیده مقاله:

In this work, Nano TiO2@KSF used as an efficient, homogeneous and reusable catalyst for the synthesis of pyrano[2,3-d]-pyrimidinone derivatives via three-component reactions between malononitrile, barbituric acid and various aldehydes in water. The products were formed in high yields within short reaction times. Also, this catalyst can be reused several times without loss of its catalytic activity. All the products were characterized using melting point and a variety of techniques, including infrared spectra (FT-IR) and were compared with trusty references. This method a simple, efficient and green for the preparation of pyrano[2,3-d]pyrimidinone (4a-4l) derivatives using TiO2@KSF under mild conditions. The promising reasons for the presented method is efficiency, generality reaction profile, mild and green reaction conditions, easy work-up procedure, short reaction times and high yields of the products, ease of preparation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano TiO2@SiO2 as an efficient and reusable catalyst for the synthesis of multi-substituted imidazoles

Nano TiO2 supported on SiO2 (Nano TiO2@SiO2) as a solid Lewis acid, was described to be an effective and reusable catalyst for one-pot three-component reaction of benzil, aryl aldehydes and ammonium acetate for the synthesis 2-aryl-4,5-diphenyl-1H-imdazoles synthesis. To explore the high efficacy of the catalytic system the four-component cyclization of benzil, aryl aldehydes, ammonium acetate ...

متن کامل

Nano TiO2@SiO2 as an efficient and reusable catalyst for the synthesis of multi-substituted imidazoles

Nano TiO2 supported on SiO2 (Nano TiO2@SiO2) as a solid Lewis acid, was described to be an effective and reusable catalyst for one-pot three-component reaction of benzil, aryl aldehydes and ammonium acetate for the synthesis 2-aryl-4,5-diphenyl-1H-imdazoles synthesis. To explore the high efficacy of the catalytic system the four-component cyclization of benzil, aryl aldehydes, ammonium acetate ...

متن کامل

nano tio2@sio2 as an efficient and reusable catalyst for the synthesis of multi-substituted imidazoles

nano tio2 supported on sio2 (nano tio2@sio2) as a solid lewis acid, was described to be an effective and reusable catalyst for one-pot three-component reaction of benzil, aryl aldehydes and ammonium acetate for the synthesis 2-aryl-4,5-diphenyl-1h-imdazoles synthesis. to explore the high efficacy of the catalytic system the four-component cyclization of benzil, aryl aldehydes, ammonium acetate ...

متن کامل

ZnO nanoparticles as an Efficient and Reusable Catalyst for Synthesis of Quinoxaline under Solvent Free Condition

1,2-Diketones have been reacted in one-pot method with 1,2-diamines at room temperature with ZnO nanoparticles as a catalyst. ZnO nanoparticles as an available and reusable catalyst is used for the synthesis of Quinoxalinein improved yields.

متن کامل

ZnO nanoparticles as an Efficient and Reusable Catalyst for Synthesis of Quinoxaline under Solvent Free Condition

1,2-Diketones have been reacted in one-pot method with 1,2-diamines at room temperature with ZnO nanoparticles as a catalyst. ZnO nanoparticles as an available and reusable catalyst is used for the synthesis of Quinoxalinein improved yields.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره Issue 4, pp. 325-460

صفحات  402- 407

تاریخ انتشار 2018-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023